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Abstract 

QUANTIFYING QUALITY: USING QUANTITATIVE METHODS TO EVALUATION 
OBSERVATION QUALITY AND ITS IMPACT ON INCIDENT REDUCTION 

 
Charles Riggs Matthews 
B.S. Clemson University 

M.A. Appalachian State University 
 

Chairperson: Yalçın Açıkgöz, Ph.D. 
 
 

Behavior-based safety (BBS) management systems are effective occupational safety 

programs that rely on behavioral data collection, intervention, and evaluation to assess 

intervention effectiveness. This data is collected on observation checklists via peer-to-peer 

behavioral observations. While there has been research confirming the effectiveness of 

observation reports on incident prevention, there has been limited research on how checklist 

quality moderates observation checklist’s impact on incident reduction. This may be important, 

as the BBS iterative process may yield inconsistent results if the data collected is inaccurate. The 

current study investigates checklist design and response, operationalizing quality checklist 

design as having more discrimination items, more safety-confirmative items, and more free-

response questions. It operationalizes response quality as fixed-response variation and free-

response length. All operationalizations of checklist design moderated the effectiveness of 

observation checklists on interventions such that observation checklists with greater quality were 

more effective at reducing incident likelihood. Both operationalizations of response quality had 

insignificant effects on observation effectiveness. 

Keywords: safety analytics; observation quality; checklist quality; behavior based safety 
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Introduction 

Background 

Workplace incidents have a significant financial cost to workers and workplaces alike. 

The National Safety Council estimates that work injuries cost the United States $171 billion 

dollars (National Safety Council, 2020) and take a significant toll on both employees and the 

companies for which they work. While the financial burden is high, it is arguably even more 

important to note the amount of physical and mental harm that these accidents bring to workers 

and their families. In 2019 alone, the United States accrued 2.8 million nonfatal workplace 

injuries, and fatal workplace accidents claimed lives of five-thousand employees (BLS Census of 

Fatal Occupational Injuries Summary, 2020; BLS Employer-Reported Workplace Injuries and 

Illness, 2021). 

Behavior Based Safety (BBS), as its name implies, has its roots in the seminal behaviorist 

publication The Behavior of Organisms, where B.F. Skinner lays out a scientific method for 

observing and modifying behavior (Skinner, 1938). He posits that organisms modify behaviors to 

get the most optimal outcomes, reducing the performance of behaviors that elicit less pleasant 

outcomes and increasing the performance of behaviors that elicit more pleasant outcomes. The 

first notion for applying behavioral principles to workplace safety may have started with Herbert 

William Heinrich, who emphasized the role of unsafe acts in safety outcomes in his book 

Industrial Accident Prevention, a Scientific Approach in 1931. It was not until the late 70’s, 
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however, that evidence-based research began to lend support for Heinrich’s ideas (Sultzer-

Azaroff, 1980; Heinrich, 1931).  

At its core, BBS is “a process that creates a safety partnership between management and 

employees that continually focuses people’s attention and actions on their own and others’ daily 

safety behavior” (Kabil & Sundararaju, 2019). The company accomplishes this objective through 

a system of baseline observation assessment, feedback, goal setting, and intervention. At its 

highest level of an organization, this means incorporating elements of behavioral systems 

analysis (BSA) and organizational development tools to assess the current state of safe behavior 

adherence. If there is any discrepancy between actual and desired behaviors, process and systems 

design can be implemented to reinforce the behaviors necessary for a safe workplace. As 

employees begin to perform safer workplace behaviors (e.g. double-checking critical process 

steps, wearing personal protective equipment (PPE) correctly, using proper technique when 

lifting), downstream safety metrics should begin to improve (ex: fewer accidents due to missing 

steps, lacking proper PPE, or lifting incorrectly). Once there is an improvement, baseline 

behavior is assessed again, intervention effectiveness assessed, and then the process starts all 

over.  

To assess and manage behavior, field observations of actual employee behavior must be 

collected. Most BBS systems accomplish this task through observation checklists: lists that 

contain items for capturing behavior as it is performed. Behavioral information is typically 

collected on a peer-to-peer level, although the responsibility for conducting observations may be 

distributed among all employees, or relegated to a specific employee within a team who is 

trained to witness and record safe observations (Cooper, 2009). These observations may also be 

planned, where an observation of a specific task is recorded based on checklist items, or 
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unplanned, where a worker may only record a behavioral observation after they have witnessed it 

in the field. Once collected, behavioral information is sent to either directly to a supervisor, to a 

broader safety information system, or both (Bogard et al., 2015).  

Once observations are recorded, a supervisor reviews these checklists and looks for 

trends in the data, rewarding safe behaviors through positive feedback, and investigating a lack 

of safe behavior, usually by communicating with the employees involved (McSween, 2003, 

location 1938-1942). After assessing the context surrounding the lack of safe behavior, the 

supervisor may clarify proper behavior in the case of a lack of information, or more likely 

implement some sort of environmental adjustment to promote future safe behaviors. After 

implementing the intervention, the supervisor continues to monitor trends in observation data to 

see if the intervention was effective (Geller, 2005). 

 With proper training, the act of peer-to-peer observation with supervisor review serves four 

purposes. First, because peers are often closer to the work than anyone else, they are better able 

to follow the process in question step-by-step. Second, by using the observation checklist, 

employees are more knowledgeable about what safe behavior entails. Third, ground-level 

employees are empowered by their ownership of safety, rather than being regulated by top-down 

policy. Finally, supervisors can highlight employees performing safe behaviors, offering 

reinforcement that makes future safe behaviors more likely (Bradler et al., 2016).  

As BBS is a bottom-up process, there is less policy and overhead monitoring required.  

This ground-level buy-in also helps foster a values-based culture of safety in the workplace 

which increases employee participation in evaluating workplace hazards (McSween, 2003, 

Location 2530-2531). BBS empowers supervisors to focus on positive feedback, making 

employees more likely to internalize and utilize supervisor suggestions (Kluger & Nir, 2010). 
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Additionally, as workers become better at recognizing and performing safe behaviors, these 

behaviors become more automated (DePasquale & Geller, 1999). 

BBS also has analytical advantages. Since BBS focuses on desirable, frequent behaviors 

rather than undesirable, low base-rate injuries, resources can be committed to encouraging 

specific positive outcomes rather than preventing a plethora of negative ones. Additionally, the 

organization has greater control over the number of observations conducted (as opposed to the 

number of incidents that occur), and so the analysis of observations means greater sample sizes 

and greater statistical power for safety analytics (Dufek et al., 1995). The theories translate to 

results: BBS management has been shown to be effective at increasing employee participation 

and reducing incidents in a wide variety of organizations, including on college campuses 

(Lebbon et al., 2012), manufacturing plants (Sultzer-Azaroff et al., 1990), paper mills (Cooper, 

2008), oil refineries (Bogard et al., 2015), construction sites (Choudhry, 2014), and coal mines 

(Hagge et al., 2017). 

BBS is a scientific, iterative process that uses behavioral information collected from the 

field to create a baseline from which intervention effectiveness is compared. If the baseline 

and/or intervention measurements are inaccurate, analysis generates inconsistent results which 

leads to inconsistent program success.  

Measurement instrument structure plays a crucial role in collecting accurate information, 

as poor tools will lead to poor measurement results (Brondolo, 2021). Furthermore, measurement 

tool structure is a factor contributing to measurement accuracy for which organizations have 

complete control; while organizations may not be able to control the reporting bias in their 

workers, they can control the degree to which their tool influences that bias. Advancing the 

literature on behavioral checklist design will enable organizations to create more accurate 
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checklists, and therefore superior safety interventions, and provide greater understanding into the 

factors influencing observation data for BBS researchers. 

Observation Checklist Item Quality 

The observation checklist is critical to effective BBS intervention, acting as the 

workhorse which carries the information on which knowledge, reinforcing feedback, and safety 

analytics are built. As a result, businesses with BBS systems put a great deal of care into creating 

observation checklists. Subject matter experts (SME’s) are consulted to find the most at-risk 

occupational activities, and then define behaviors which help mitigate these risks, a process 

known as “pinpointing” (Komaki et al., 1978). Then these pinpoints are compiled into safety 

observation sheets, which contain pinpointed behaviors specific to a particular project or 

functional crew (Geller, 2005). The sheet usually contains a list of pinpoints and a fixed-response 

box for each pinpoint that allows the worker to say “yes/no” or rate the safety of a behavior on a 

Likert scale. There should also be empty space for observers to fill in contextual narrative data if 

needed (McSween, 2003, Location 1019-1049). 

Despite the importance of pinpointing and observation checklists, and the number of 

resources in the literature describing best practices for creating these checklists, there has been 

little empirical work in testing the effectiveness of different text structures of pinpoints (Geller, 

2001, 2005; Mayer et al., 2019; Miller, 2006). Specifically, Wirth and Sigurdsson in their 2008 

review of safety literature note that there is a lack of research investigating whether specificity in 

behavioral pinpoints leads to better safety outcomes (Wirth & Sigurdsson, 2008). Their review 

contrasts Komaki et al.’s suggestion of using pinpoints which capture general classes of 

behaviors (ex: “body placement”) to Geller’s recommendation for greater pinpoint specificity 

(Geller, 2001; Komaki et al., 1978). Komaki’s argument for more general pinpoints posits that 
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the workplace is an exceptionally variable place, and pinpoint flexibility is more important than 

specificity for identifying behavioral trends. Geller, in contrasts, believes that the top few 

highest-risk behaviors are responsible for most of the occupational accidents in any given work 

setting, and so those behaviors should be targeted specifically through more detailed checklist 

pinpoints. While initial analyses indicate that task-specific pinpoints are more effective for 

incident reduction, the field of pinpoint analysis is still new (Laske, 2020). 

Others build off Geller’s insights. When making suggestions about pinpoint construction, 

Ludwig (2018) builds off Johnston and Pennypacker’s suggestion to create specific and 

discrimination pinpoints that describe clear antecedents, behaviors, and consequences during 

safety-related observations (Ludwig, 2018, pp. 113; Johnston & Pennypacker, 1980). This 

includes a ‘do what, to what, when, and why?’ structure. ‘Do what’ means that the pinpoint 

contains a verb describing a physical action being taken. ‘To what’ means that the pinpoint 

describes a physical object which is receiving the aforementioned action. ‘When’ means that the 

pinpoint contains a specific cue that discriminates when the behavior begins and/or ends within a 

process. ‘Why’ means that the pinpoint indicates what the behavior is trying to accomplish. By 

providing all the above information, a pinpoint makes a behavior more discriminant, that is: 

more specific and differentiable from other behaviors. The recording of discriminant behaviors 

better-informs workers as to what behavior should be fulfilled, leading to more accurate data 

collection and more specific reinforcement, and provides better detail for subject matter expert 

investigation and intervention. Quality checklist items, therefore, should have pinpoints that 

contain more “do what”, “to what”, “when”, and “why” (discriminant) information in them. An 

example of a checklist with a highly discriminant pinpoint would be “Checks (do what) rear-
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view mirror (to what) before reversing the vehicle (when) to ensure the space is clear (why)”. A 

poor example would be “PPE (what)”. 

This study’s first hypothesis regarding checklist quality assesses that assumption: 

Hypothesis 1a: The negative relationship between daily normalized observation checklist 

counts and daily incident probability will be stronger when observation checklist have 

more discriminant pinpoints. 

 Checklist items should also confirm safe behaviors, rather than point out unsafe ones. As stated 

above, part of BBS’s success is that the system can commit resources to specific desirable 

outcomes, and that workers are more likely to internalize positive feedback. By creating 

checklist items that confirm safe behaviors, workers are rewarded when the supervisor reviews 

the checklist and notes good behavior, and organizations are able to track the specifics of what is 

going right, rather than the ambiguity of everything that can go wrong. A checklist item stating 

“employee did not wear proper PPE” should have less quality than an item stating “employee 

wore proper PPE”. The second hypothesis on checklist item quality tests the relationship 

between safety-confirming questions and safety outcomes: 

Hypothesis 1b: The negative relationship between daily normalized observation checklist 

counts and daily incident probability will be stronger when observation checklists contain 

questions that confirm safe behaviors. 

Observation Checklist Response Quality 

This study also examines “response quality” and its relationship with safety incidents. 

Quality checklist responses should be sensitive enough to changes in safe behavior as to be 

useful for supervisor interventions. There are two reasons that checklists may lack sensitivity: 

worker motivation or poor checklist item selection. 
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The workplace provides a variety of stimuli competing for worker resources, including 

attention and behavior. Along with demands such as observation checklist accuracy, workers 

must attend to other work tasks and social norms. A worker will choose to perform the tasks that 

garner the greatest reward, and when other tasks outweigh observation checklist accuracy, this 

can lead to inaccurate results. While trying to meet a quota, whether explicit or implied, 

employees may simply mark safe answers and give little context to their observations in order to 

increase quantity over quality of observations, a phenomenon known as “pencil whipping” 

(Ludwig, 2014). When employees are trying to impress their supervisor or avoid confrontation 

with their coworker, they are also more likely to inflate the number of safe observations (Spence 

& Keeping, 2011).  

The result is an influx of observation checklists that all contain the same “safe” answer 

throughout as employees neglect the environment in order to complete the checklist quickly. 

With these lists in-hand, supervisors are unable to give quality feedback to their employees and 

safety professionals are unable to identify the trends in their data critical to a successful safety 

analytics system. In the current study, response quality is operationalized in two ways based on 

item type.  

First, fixed-response items were evaluated based on variance in responses. Specifically, if 

an observation checklist with a 1-5 safety scale has many different responses with some 1’s, 2’s, 

3’s, 4’s, and 5’s, then responses to that checklist have high variability. If it instead had all 5’s, 

that checklist’s responses would have no variability. This study assesses how response variability 

across a checklist acts as a moderator between the number of observations and incident 

reduction. As variability increases, it indicates that employees are truly evaluating their coworker 
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during observations, and this should direct peer feedback, and dedicated safety staff to evaluate 

general trends in safety metrics. 

Hypothesis 2: The negative relationship between daily observation checklist counts and 

daily incident probability will be stronger as fixed-response answer variability within a 

checklist increases. 

Second, as mentioned earlier, textboxes allow observers to further expand on their 

findings, identifying specific contextual factors that may not be captured in the fixed-response 

questions (McSween, 2003; Miller, 2006). This additional information allows supervisors to 

better assess barriers to safe behaviors. Despite the ubiquity of free-text responses in observation 

checklists, to date there has been no formal assessment of the effectiveness of these responses on 

incident reduction. This study first examines the mere presence of a written free-text response: 

Hypothesis 3a: The negative relationship between observation checklist counts and incident 

probability will be stronger when the percentage of free-response questions within an 

observation checklist is greater. 

Beyond the existence of narrative free-text, a subject matter expert must be able to 

understand the text and interpret it in a way that gives useful context to the behavior. Once again, 

there is a lack of literature specifying what a “quality” narrative response should look like, but 

research done in other fields (specifically performance appraisals) shows that narrative feedback 

content analysis is helpful for supplementing quantitative measures of performance (Speer, 2021, 

2018). As employees enter more information, the free-text responses should offer greater insight 

from subject matter experts. The second hypothesis regarding free-text response data tests this 

proposition: 
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Hypothesis 3b: The negative relationship between observation checklist counts and 

incident probability will be stronger when those observation checklists have free response 

questions with longer responses. 
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Methods 

Data Source 

The data for this study comes from a safety database of a large chemical manufacturing 

company employing over 14,000 employees around the world. The company tracks its 

occupational safety metrics through a safety reporting information system (SRIS) that gathers 

information from all of its sites. Despite the worldwide access to this database, different 

functional parts of the company (divisions) have varying participation rates with the SRIS. 

The information submitted by the employees are stored in two different primary datasets. 

The first, named Audits, contains all information on two main types of leading indicators: 

inspections and observations. To perform an inspection, dedicated employees conduct a regular, 

planned exploration of the workplace to find environmental factors that may lead to unsafe 

conditions. Observations are conducted voluntarily by employees, either on a planned or 

spontaneous basis, noting down the degree to which a worker follows safe behaviors while 

performing a task. 

The second dataset, named Incidents, contains information on three primary kinds of 

lagging indicators. The first, hazards, are reported when an employee spots something in the 

environment that has a potential to cause an injury (example: a dead branch on a tree that may 

fall). A worker should report a near-miss when they witness an event which almost resulted in an 

injury (example: a dead branch falls from a tree and almost injures an employee). A true incident 
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occurs when an event takes place that results in an actual workplace injury (example: a dead 

branch falls from a tree and hurts an employee). 

When an employee enters a report to be saved in either of the above datasets, there are 

some required pieces of information, including the date of the report, kind of audit/incident, 

location, and division to which the reporter belongs. Specific to Audits (observations and 

inspections), the employee must also enter all of the information gathered from the audit, 

including each individual question and answer. 

Two divisions of the company were chosen for this study based on their consistent 

reporting within the SRIS. Together these divisions employ 1,500 workers. The first division’s 

functional role involves maintenance on machine parts (Maintenance), while the other division 

focuses on manufacturing (Manufacturing). Workers in each division are regularly introduced to 

a variety of potential safety hazards, including slips, trips and falls, chemical exposures, 

environmental releases, hot working conditions, interaction with heavy machinery, and lifting 

heavy equipment. 

A nondisclosure agreement between the host organization and the researchers is included 

in Appendix A. This agreement outlines the use of nonidentifiable data from the host 

organization. The host University Internal Review Board (IRB) also approved the use of this data 

(IRB# 19-0072, Appendix D).  

Each division is made up of several departments. This study examined hypotheses on 

both the departmental and divisional level, depending on the availability of data in each level. 

Due to statistical power concerns, hypotheses 1 and 3 were investigated using the entire dataset, 

while Hypothesis 2 was investigated using a single department with the most SRIS information 

available.  
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Data Set and Variables 

The study examined observation sheets and safety incidents entered into the SRIS by the 

Maintenance and Manufacturing division employees between 2017 and 2019. For observations, 

the dataset contains information on a checklist-question level, with each row being a unique 

question from a unique observation checklist. Each question has data regarding the date it was 

answered, the division of the employee being observed, checklist number, answer, 

recommendations, and findings. For incidents, the dataset provides the date that the incident 

occurred and division and department it occurred in. Weekly employee work hour information 

was also collected for every employee in each division. This includes total employee hours and 

overtime hours each week. 

Data Transformation and Measures 

In order to run our analyses, we first calculated the number of observation forms 

completed per day in each department. Next, this data was normalized by employee worker 

hours per week to account for natural variations in the amount of work done or differences in the 

number of workers. Normalization was performed by first dividing the variable counts by weekly 

work hours, and then multiplying the result by 200,000. As OSHA has found in their reports, 

multiplying these counts by 200,000 allows for easier interpretation, as there are often several 

orders of magnitude more work hours than report counts. Accordingly, observations in this study 

should be interpreted as “observations per 200,000 weekly work hours”. Normalizations reduce 

the confounding variable of fluctuating work demands; as more work is being done, there is 

naturally an increase in both observation counts and incidents. Without normalization, work-

hours might act as a confounding variable in the analyses. 
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Incidents are relatively rare occurrences in the workplace, and often follow a heavily 

skewed distribution. This means that there are many days with no occurrences, and only a few 

days per year that have an incident. Skew is quantified in a “skewness” metric, measured on a 

scale from negative infinity to positive infinity, where the farther away a number gets from zero, 

the more skewed the distribution is. A high skew is anything above 1.0 or below -1.0. Due to 

strong skew in the incident/200,000 weekly work hours, this variable was transformed into a 

dichotomous outcome: 1 represented days that had at least one incident, while 0 represented days 

without incidents. This new outcome was termed “incident probability” rather than incident 

count. 

Additional variables were added to the dataset to account for the delayed impact of 

observation checklist counts on incident probability. When an observation checklist is submitted, 

it takes time for subject matter experts to review the results, have conversations with employees, 

and implement change. Measuring the impact of observation checklist categories today on 

incident probability today is therefore unlikely to tell the whole story as it theoretically evaluates 

a time period where observations checklist counts have minimal impact on incident probability.  

In order to find the optimal delay in which observation checklist counts impacts incident 

occurrence, analyses were conducted across several different time lags. The most impactful 

relationship would be defined as one with the greatest effect size (defined as the odds that an 

incident will occur given a one unit increase in observation checklists) and significance (defined 

as p-value below our alpha, 0.05). 

While it is important to measure the relationship between observation checklists on 

incidents over time, the high variability and strong positive skew of both variables meant that 

some extreme values may be over-represented in a simple lagged analysis. To account for these 
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potential extremes, count variables were calculated as rolling sums across their respective lags. 

Rather than assessing the impact of observations today, yesterday, and the day before, this study 

measures the impact of observations today, observations across the past two days, and 

observations across the past three days. 

Some of the study’s variables (dichotomous, indexed, and percentile) are unsuited for 

rolling sums, as their values become difficult to interpret when their boundary 

minimums/maximums are breached (a summed dichotomous variable is useless statistically). 

Indexed and percentile variables were instead calculated as rolling averages over their given time 

periods (ex: the one day, two day, and three day averages), while dichotomous variables were 

calculated as the probability of an even happening across some number of days (ex: the 

probability of an incident on one day, over two days, or over three days).Finally, predictor 

variables were also lagged one, two, three… up to seven days. This lag allows the study to 

examine how observation totals today and the past few days predict incident probability over the 

course of the next few days. 

In sum, the dataset was normalized by every 200,000 weekly work hours. Daily incident 

totals were turned into a binary daily incident probability variable. To measure the change in 

incident probability through time, several new variables were created measuring the probability 

over one, two, three,... up to seven days out. Observations/200,000 weekly work hours were 

transformed into one day, two day, …, up to seven day rolling sums. The probability of incidents 

occurring in the next one to seven days was calculated, and then lagged so that the sum of the 

previous n number day of normalized observations could be used to calculate the probability of 

an incident within the next x number of days. Accordingly, this dataset allows for the 
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measurement of effects from predictors occurring within the last week on outcomes within the 

next week. 

Hypothesis 1a: The negative relationship between daily normalized observation checklist 

counts and daily incident probability will be stronger when observation checklist have 

more discriminant pinpoints. 

Hypothesis 1a was tested using data across both divisions, as there were only 738 unique 

questions across all departments. To maintain adequate statistical power, all 738 of those 

questions were assessed across both divisions. 

Checklist question quality was assessed across four different factors through hand-

coding. This was accomplished by a single coder who assessed whether each checklist item 

contained behavioral information regarding “do what” meaning that there is a physical action 

being suggested by the question, “to what” meaning that there is a physical object that is being 

acted upon in the environment, “when” meaning that there is some temporal or conditional 

phrase that indicates when this action should be taken within a process, and “for what purpose”, 

meaning that there is some desired outcome to be achieved. No measure of inter-rater reliability 

was assessed, as items were only measured by a single rater. A good example of a behavioral 

observation may be “seals off (do what) energy source (to what) after checking with supervisor 

(when) to ensure no accidental release (why)”. A particularly poor example may be “check 

energy”. For a list of examples, please refer to Table 1.  
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Table 1     
     
Examples of Item Discrimination Scores 
  

Item Do What? To What? When? Why? 
High Actionability Items 

How did you check the vehicle for 
stability before raising to working 
height? Check  The vehicle 

Before raising to 
working height For stability 

When repairing steam leaks, how did 
you position body out of line of fire? Position Body 

When repairing 
steam leaks 

Out of line of 
fire 

Low Actionability Items 
Rushed Rushed N/A N/A N/A 

Using Hazard Lights Using 
Hazard 
Lights N/A N/A 
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Information on the degree that a pinpoint was discriminant was operationalized with a 

“Discrimination Score.” To generate this score, a list of all questions was generated. Each 

question was rated as behavior- or non-behavior based on whether the item was an action 

performed by a worker or a condition of the environment (i.e., hazard). A behvioral question got 

an additional point of Discrimination Score for each of the four indicators of discriminant 

behavior (Do What? To What? When? Why?), with a minimum of 0 and a maximum of 4. 

Average Discrimination Score for a given checklist was calculated by dividing the total 

Discrimination score across all questions b the total number of questions for that checklist. Then 

the average Discrimination Score for a checklist across an entire day was calculated by adding 

all of the average checklist Discrimination Score’s together for a day and dividing by the number 

of observation checklists for that day. To account for employee hours, that variable was divided 

by the weekly employee hours and multiplied by 200,000. The final variable was a normalized 

measure of average Discrimination Score per observation checklist per day. 

In summary, the operationalization of items with discriminant pinpoints was the sum of 

the normalized average number of questions per observation checklist per day over the course of 

one through seven days. 

Hypothesis 1b: The negative relationship between daily normalized observation checklist 

counts and daily incident probability will be stronger when observation checklists contain 

questions that confirm safe behaviors. 

A single coder evaluated all checklist items. That rater first marked each item as 

describing a behavior or not, then marked each item as confirming safe behaviors or not. An 

example of a safe-behavior confirming item would be “Wore PPE Correctly”. To calculate the 

average number of safe-behavior confirming items per observation sheet per day, the number of 
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safe-behavior confirming items within an observation sheet was added together and then divided 

by the total number of items within that check sheet. The average number of safe-behavior 

confirming items was then added together and divided by the total number of observations for a 

given day. This variable was then normalized by dividing by the total number of weekly hours 

and multiplying by 200,000. Finally, this variable was aggregated across time as a rolling sum. 

In summary, the operationalization of safe-behavior affirming items was the sum of the 

normalized average number of questions per observation checklist per day over the course of one 

through seven days. 

Hypothesis 2: The negative relationship between daily observation checklist counts and 

daily incident probability will be stronger as fixed-response answer variability within a 

checklist increases. 

The Index of Qualitative Variation (IQV), as the name implies, is a metric for measuring 

the variation within qualitative variables. The value ranges from 0 to 1, with greater numbers 

meaning more variation. IQV is calculated with the following equation. 

IQV = K(1002 – ΣPct2) / 1002(K – 1) 

K is the number of categories in the distribution and Pct is the percentage representation of each 

category in the distribution. If only one category is represented, then one percentage becomes 

100 and all other percentages become 0. Squaring that value puts 10000 in the numerator, and 

IQV becomes 0. Oppositely, if all variables are represented equally, the numerator becomes 

equal to the denominator, and IQV becomes 1. 

 To determine IQV within this dataset, first a coder evaluated each fixed item and determined the 

number and kinds of possible answers to that item, which would be representative of K. As an 

example, there may be several questions within a checklist that have the response “Yes, No, NA” 
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as available response options. Another group of questions may have “Safe, Unsafe, NA” as 

available response options. These questions would have the same number of possible responses, 

but different response options. Then questions with the same number and types of fixed response 

options were aggregated within a checklist such that the percentage of each possible answer was 

calculated. Those percentages were exponentiated, then summed, subtracted from 10,000, 

multiplied by K, and then divided by 10,000 times K – 1. The result was an average IQV per 

free-item response group (kinds of responses and number of responses). IQV across all groups 

was averaged to arrive at an average IQV across one checklist. That value was multiplied by 100 

to allow for easier interpretation of odds ratios from logistic regression models. While IQV 

typically ranges from 0 to 1, these values range from 0 to 100. Daily IQV average was 

determined by taking the average IQV across all observation checklists across a day. IQV was 

aggregated across time by taking the average IQV across each time period. 

 In summary, the final operationalization of fixed-response variability was an n-day average of 

IQV per observation checklist per day. 

Hypothesis 3a: The negative relationship between observation checklist counts and incident 

probability will be stronger when the percentage of free-response questions within an 

observation checklist is greater. 

To preserve statistical power, Hypothesis 3 was analyzed across divisions, as there were 

only 65 different templates across the dataset. There were only 738 unique questions across all 

departments, and of those 125 were free response questions that included behavior-irrelevant 

inquiries into the location of the observation checklist and the task being performed. Of those, 

only 70 questions were behavior-based in nature. A single coder rated each question as either 

free- or fixed- response. The number of free response vs total response questions were counted 
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across each template version, and a percentage free-response questions per checklist was 

calculated. That checklist average was average across the daily level. To assess average free 

response across several periods, a rolling average of the past one to seven days was calculated by 

averaging the metric and then lagging its values. This value was multiplied by 100 to make odds 

ratio interpretations easier. 

 In summary, the presence of free-response questions was operationalized as the rolling average 

percent of free response questions per observation checklist per day across one through seven 

days. 

Hypothesis 3b: The negative relationship between observation checklist counts and 

incident probability will be stronger when those observation checklists have free response 

questions with longer responses. 

Free response answer length was calculated by counting the characters in each free 

response question response, averaging them across each observation checklist, and then getting 

the daily average of free response answer length. Then past one to seven day answer lengths 

were calculated by computing the rolling averages across one to seven days. 

In summary, free-response length was operationalized as the average free-response 

answer length per observation checklist per day, averaged across one to seven days. 

Operationalization Summary 

 As this study contains a broad array of operationalizations, Table 2 provides a summary of all 

operationalizations. The conceptual variable is listed in the “variable” column. Operational units 

display the transformations performed on to obtain the quantitative variable needed for analysis. 

The aggregation-over-time method shows how each variable was aggregated across one to seven 

days. 
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Table 2    
    
Variable Operationalization 
Summary   
  

Hypothesis Variable Operational Unit Aggregation-Over-
Time Method 

1A Discriminant 
Pinpoints 

Average Discrimination Score per 
Observation Checklist Per Day Sum 

1B Safe Behavior 
Confirmation 

Average Number of Items 
Confirming Safe Behaviors per 
Observation Checklist Per Day 

Sum 

2 Fixed-Item Response 
Variation 

Average Index of Variation per 
Observation Checklist per Day, 

multiplied by 100 
Average 

3A Free Response 
Questions 

Average percentage of free 
response questions per 

observation checklist per day, 
multiplied by 100 

Average 

3B Free Response 
Length 

Average free response length per 
observation checklist per day Average 

Overall 
Tests Incidents Occurrence of at least on incident 

each day Occurrence 
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Results 

Descriptive Statistics 

Cross-Division Statistics 

Table 3 shows the cross-division descriptive statistics for the one- and seven-day 

aggregations of the normalized continuous variables. Missing values come from performing 

rolling-sum and lag transformations. Incidents were skewed (Skewness > 1) across all rolling 

sums, which is the primary reason this study conducted logistic regression analyses, as logistic 

regression helps account for skewness in the outcome variable by changing it into a binary 

variable. Individual measures for the first hypothesis (H1a; “Discrimination Score”) show skew, 

but after aggregation the total Discrimination Score is not skewed. The sizable maximums in 

occurrences comes from the normalization equation mentioned above, which was calculated by 

dividing by weekly hours and multiplying by 200,000, a standard set by OSHA containing a 

year’s worth of worker data per 100 employees (100 employees working 40 hours per week, 50 

weeks per year). 

Table 4 in shows descriptives for the binary outcome variables. Only 13.5% of days 

contained at least one incident, and 63.1% of seven-day time periods contained at least one 

incident.  
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Table 3    
   

    
   

Overall Descriptives of Division-Level Variables    

       

Variable (Normalized) N Missing Mean Median SD Coefficient of Variation 

              
Summed Variables 

Incident 1-Day Total 1094 0 5.00 0.00 14.80 2.96 
Incident 7-Day Total 1094 0 34.98 22.14 41.08 1.17 
Observation 1-Day Total 1093 1 86.94 82.83 49.69 0.57 
Observation 7-Daty Total 1081 13 610.62 590.44 161.29 0.26 
Do What 1-Day Total 1093 1 406.07 372.65 277.67 0.68 
Do What 7-Day Total 1081 13 2854.62 2714.47 882.22 0.31 
To What 1-Day Total 1093 1 389.79 362.96 262.05 0.67 
To What 7-Day Total 1081 13 2739.61 2614.62 819.43 0.30 
When 1-Day Total 1093 1 60.41 43.48 61.09 1.01 
When 7-Day Total 1081 13 425.01 328.46 241.85 0.57 
Why 1-Day Total 1093 1 15.82 0.00 24.21 1.53 
Why 7-Day Total 1081 13 110.98 116.70 109.51 0.99 
Affirmation 1-Day Total 1093 1 0.31 0.00 0.39 1.29 
Affirmation 7-Day Total 1081 13 2.14 1.75 1.36 0.64 
Weekly Work Hours 1094 0 54605.92 56008.13 7384.20 0.14 
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Table 3 (continued)    
   

    
   

Overall Descriptives of Division-Level Variables    

       

Variable (Normalized) N Missing Mean Median SD Coefficient of 
Variation 

Averaged Variables 
Actionability Score 1-Day Total 1093 1 18.37 0.00 27.11 1.48 
Actionability Score 7-Day Total 1081 13 18.32 1.78 22.37 1.22 
Percent Free-Response 1-Day 
Average 1093 1 17.74 0.00 26.26 1.48 

Percent Free-Response 7-Day 
Average 1081 13 17.69 1.77 21.57 1.22 

Free Response Question Answer 
Length 7-Day Average 1093 1 2.37 0.00 2.65 1.12 

Free Response Question Answer 
Length 7-Day Average 1081 13 2.39 1.97 1.89 0.79 
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Table 3 (continued)      
  

   
  

Overall Descriptives of Division-Level Variables  
       

Min Max Skewness Percentiles 

    Skewness SE 25th 50th 75th 
Summed Variables 

0.00 104.69 3.60 0.07 0.00 0.00 0.00 
0.00 257.64 1.59 0.07 0.00 22.14 52.68 
0.00 253.50 0.67 0.07 49.71 82.83 116.63 
0.00 1157.47 0.46 0.07 488.85 590.44 713.47 
0.00 1444.34 0.79 0.07 173.88 372.65 563.79 
0.00 5894.22 0.72 0.07 2242.90 2714.47 3312.05 
0.00 1400.20 0.75 0.07 170.43 362.96 542.47 
0.00 5566.33 0.68 0.07 2176.86 2614.62 3176.63 
0.00 381.47 1.32 0.07 10.39 43.48 92.37 
0.00 1256.53 0.86 0.07 236.16 328.46 614.62 
0.00 117.80 1.58 0.07 0.00 0.00 27.57 
0.00 439.04 0.52 0.07 0.00 116.70 190.03 
0.00 1.91 1.21 0.07 0.00 0.00 0.51 
0.00 6.89 0.78 0.07 1.17 1.75 3.01 

22101.00 70163.88 -1.60 0.07 52972.33 56008.13 57914.90 
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Table 3 (continued)      
  

   
  

Overall Descriptives of Division-Level Variables  
       

Min Max Skewness Percentiles 

    Skewness SE 25th 50th 75th 
 

Averaged Variables 
0.00 99.01 0.72 0.07 26.23 34.41 41.47 
0.00 435.93 0.45 0.07 217.08 238.75 262.18 

0.00 100.00 1.23 0.07 0.00 0.00 37.04 

0.00 91.43 0.78 0.07 0.45 1.78 40.02 

0.00 14.88 0.57 0.07 0.00 0.00 4.80 

0.00 6.45 0.19 0.07 0.66 1.97 4.20 
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Table 4      
      
Cross-Division-Level Y/N 

Incident Outcomes      
            

Variable Missing Mean Sum Coefficient 
of Variation SD 

1-Day Incident 
Occurrences 0 0.135 148 2.533 0.342 

7-Day Incident Occurences 0 0.631 690 0.765 0.483 
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The coefficient of variation is a quick way to compare overall variation in the variables 

(equation is C = SD/Mean). As datasets are aggregated to larger numbers, the coefficient of 

variation decreases, meaning that variation is also decreasing. 

Department-Specific Statistics 

 Table 5 displays the continuous data for the individual department used to answer 

Hypothesis 2. Data is missing from the dataset for the same reason stated above. Skew in the 

outcome variable across all rolling sums is even more apparent in this dataset (15.061 for 1-day 

sums and 5.466 for 7-day sums). While observations and 7-day IQV averages were slightly 

skewed, this difference only slightly above 1 and below -1 (1.388 and -1.246 respectively). 

Aggregation has a similar effect on this dataset, where overall variation decreases.  

 Table 6 displays the binary data for the individual department. Incident occurrence is, 

predictably, even more rare, with only 0.6% of days containing any incidents, and 3.9% of 7-day 

time periods containing at least one incident. 
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Table 5    
   

    
   

Overall Descriptive Statistics for Department-Level Variables 
              

Variable (Normalized) N Missing Mean Median SD Coefficient 
of Variation 

              
Summed Variables 

Incident 1-Day Total 1075 0.00 0.11 0.00 1.50 14.02 
Incident 7-Day Total 1075 0.00 0.75 0.00 3.92 5.21 
Observation 1-Day Total 1075 0.00 141.88 117.85 115.33 0.81 
Observation 7-Day Total 1075 0.00 991.34 935.44 452.90 0.46 
Weekly Hours 1075 0.00 10154.77 9121.92 3103.28 0.31 

Averaged Variables 
Index of Qualitative Variation 
1-Day Average 1075 0.00 4.91 5.38 2.06 0.42 

Index of Qualitative Variation 
7-Day Average 1075 0.00 4.89 5.11 1.07 0.22 
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Table 5 (continued)  
   

    
   

Overall Descriptive Statistics for Department-Level Variables 
              

Minimum Maximum Skewness Percentiles 

    Skewness SE 25th 50th 75th 
Summed Variables 

0.00 28.24 15.06 0.07 0.00 0.00 0.00 
0.00 28.24 5.47 0.07 0.00 0.00 0.00 
0.00 756.25 1.39 0.07 55.48 117.85 198.92 
0.00 2639.36 0.72 0.07 662.91 935.44 1235.44 

3333.00 16374.11 0.62 0.07 8162.31 9121.92 11882.07 
       

0.00 8.17 -1.04 0.07 3.82 5.38 6.46 

0.00 6.80 -1.25 0.07 4.37 5.11 5.61 
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Table 6   
         
Department-Level Y/N Incident Outcomes   

              

Variable 
(Normalized) N Missing Mean Sum 

Coefficient 
of 

Variation 
SD Minimum Maximum 

1-Day Incident 
Occurrences 1075 0 0.00558 6 13.35 0.0745 0 1 

7-Day Incident 
Occurrences 1075 0 0.03907 42 4.96 0.1939 0 1 
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Hypothesis 1a: The negative relationship between daily normalized observation checklist 

counts and daily incident probability will be stronger when observation checklist have 

more discriminant pinpoints. 

Average daily question quality and observation counts across the past seven days, as well 

as their interaction, were entered across forty-nine binary logistic regression models predicting 

the probability of an incident across the next one to seven days. These analyses were conducted 

on the cross-division level. The lag with maximal effect (LME) for observations impacting 

incident probability was observation counts for the past two days predicting the probability of an 

incident over the course of the next week (OR = 1.006, p = .035). The corresponding interaction 

effect was also significant (OR < 1.000, p = .023), and the overall model with both predictors 

and their interaction was significant for reducing the error variance in the outcome 

(R2
N = 0.0098, 𝜒2 = 7.82, p = 0.050). 

As shown in Table 7 and Figure 1-2, when the average observation item quality across 

the past two days is low, low numbers of observation checklists means that there is only a slight 

probability (0.56) of an incident over the next seven days, but this probability increases as 

numbers of low-quality observation checklists increases (up to 0.74). The reverse is true when 

observation item quality is high (0.73 to 0.54). These results support Hypothesis 1a. 

The effect size measures for these results are presented as odds ratios. An odds ratio is 

the estimated increase in the log-odds of the outcome per one unit increase of the predictor 

(Szumilas, 2010). Odds and probability are two ways to measure the chance of a future binary 

outcome’s occurrence. Probability compares the number of events for which an outcome occurs 

to the total number of possible events. As an example, the probability of rolling a 1 on a die with 

six sides is 1 (the number of possible events for which the outcome in question occurs) out of 6 
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(the number of events possible), or 1/6. The odds of an outcome occurring instead compare the 

number of events for which an outcome occurs to the number of events to which an outcome 

does not occur. For the same die example, the odds would be 1 (the number of possible events 

for which the outcome in question occurs) out of 5 (the number of possible events for which the 

outcome does not occur). 

An odds ratio compares two odds to one another, and an odds ratio in a logistic 

regression examines how a one point increase of the predictor impacts the likelihood of the 

outcome. As an example, if a predictor has an odds ratio of 2.0 when predicting an outcome, that 

means that a one point increase in the predictor will make the outcome twice as likely. As a 

result, an odds ratio of 1.0 means that there is no effect, as a likelihood multiplied by 1.0 remains 

the same. 

Figure 1 is a Logistic-Lag graph, displaying all of the Odds Ratio outputs for all 

combinations of 1-7 day aggregations of predictors and 1-7 day aggregations of outcomes. On 

the x-axis is a measure of Odds Ratios (OR). On the left y-axis, Figure 1 displays the 1- through 

7- day aggregations of incident occurrence. The right y-axis displays the 1- through 7-day 

aggregations of the predictors. Significant relationships are highlighted in black. In Figure 1, the 

black line is in the 2nd box as indicated by the right y-axis, meaning that it corresponds to the 2-

day rolling total of observations and the 2-day rolling average of Discrimination Score. It rests 

on the 7th line as indicated by the left y-axis, meaning that it corresponds to the 7-day rolling 

aggregation of incident occurrence. In total, this means that the 2-day rolling total of 

observations predicting outcomes, while holding both 2-day average Discrimination Score and 

the interaction constant, were significant in their contribution to predicting incidents within the 

next 7 days, and made incidents more likely to occur. 
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Figure 3 is a marginal means plot. On the x-axis of this plot is the predictor variable, in 

this case the 2-day rolling sums of normalized observations. This axis contains all values from 

the minimum to maximum number of that predictor variable. On the y-axis is the probability of 

the outcome variable occurring, in this case the probability of an incident within the next week. 

The plot contains three lines, one for high (one standard deviation above the mean), medium (the 

mean) and low (one standard deviation below the mean) values of the interaction term, in this 

case, the interaction term is Discrimination Score. This graph displays all predicted probabilities 

of an incident in the next seven days for all values of low, medium, and highly discriminant 

observation checklists. As highly discriminant (SD + 1) observation checklists increase, incident 

probability decreases. As low-discriminant (SD – 1) observation checklists increase, incident 

probability increases. Table 7 displays specific probability values for high, medium, and low 

discrimination observation checklists for the 0th, 25th, 50th, 75th, and 100th percentile of 

observation counts. 
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Table 7      
      
High/Low Interaction Impact on Incident Probabilities 
(Discrimination)  
            

Count Percentile 

 0th 25th 50th 75th 100th 
  0 120 240 360 480 
Actionability 
Value 

     

SD - 1 0.56 0.61 0.65 0.70 0.74 
SD + 1 0.73 0.68 0.64 0.59 0.54 
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Hypothesis 1b: The negative relationship between daily normalized observation checklist 

counts and daily incident probability will be stronger when observation checklists contain 

questions that confirm safe behaviors. 

The interaction between number of questions confirming safe behavior per day and 

observation checklist count per day was evaluated across forty-nine different regression models. 

Observation checklist counts had the strongest impact on incident probability when comparing 

observations over the past two days predicting incident probability over the next two days  

(OR = 1.002, p = .049). The overall model fit for this test was significant (R2
N = 0.0205, 𝜒2 = 

15.2, p =  0.002), and the interaction effect for this LME was also significant (OR = .996, p = 

.004). Table 8 and Figures 4-5 display that when observation counts over the past two days 

contain fewer safety-confirming questions, there is a greater probability of an incident occurring 

over the next two days (0.15 to 0.53). When observation counts over the past two days contain 

more safety-confirming questions, there is a lower probability of an incident occurring over the 

next few days (0.38 to 0.12). See Table 8 and Figure 6 for more information. 
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Table 8      
      
High/Low Interaction Impact on Incident Probabilities 
(Safe Behavior Confirmation) 
  

Count 0th 25th 50th 75th 100th 

  
0 120 240 360 480 

Confirmation 
Value      
SD - 1 0.15 0.19 0.23 0.29 0.53 
SD + 1 0.38 0.30 0.23 0.17 0.12 
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Hypothesis 2: The negative relationship between daily observation checklist counts and 

daily incident probability will be stronger as fixed-response answer variability within a 

checklist increases. 

To find the maximum delayed relationship between observation rolling sums and incident 

occurrence, forty-nine logistic regressions were run with observation checklist rolling sums 

across each of the past seven days and average IQV across each of the past seven days as 

predictors and the probability of incident occurrence across each of the next seven days as 

outcomes. The outcome-predictor lag pair with the greatest significance and effect between 

observation counts and incident probability was selected as the baseline relationship before 

assessing the interaction impact. The LME was identified by first eliminating any regressions 

that did not result in a significant relationship between observation counts and incident 

probability. From among the significant results, the maximum odds ratio was selected, and then 

interaction effects were checked for significance/effect. 

As shown in Figures 7-8, The four-day rolling total of observations within the department 

had a LME on the next-day probability of an incident in that same department (OR  = 1.011, p = 

.032). After evaluating the impact of IQV, observation counts, and the interaction between them, 

the overall chi-squared model failed to significantly differ from a null model with no predictors 

(R2
N = 0.0559, 𝜒2 = 4.01, p = 0.260). This means that, regardless of independent variable 

contributions to the model, the model was not helpful for predicting incident probability beyond 

a null model. 
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Hypothesis 3a: The negative relationship between observation checklist counts and incident 

probability will be stronger when the percentage of free-response questions within an 

observation checklist is greater. 

Forty-nine logistic regression models were built with each model containing the sum of 

each of the past seven days of observation counts predicting the probability of an incident in each 

of the next seven days, with the past seven-day average percentage of free response answers as a 

moderator. 

Observation counts today were best at predicting incident occurrence across the next five 

days (OR = 1.004, p = .006).  The overall model test (R2
N = 0.0352, 𝜒2 = 29.3, p = < 0.001) and 

interaction effect for this LME was also significant (OR < 1.000, p = .021), meaning that when 

the free response percentage is low, an increase in observation checklists today leads to an 

increase in the probability of an incident in the next five days (0.470 to 0.769). When the free 

response percentage is high, incident probability is instead reduced (0.470 to 0.387). See Table 9 

and Table 9 for more details. 
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Table 9      
      
High/Low Interaction Impact on Incident Probabilities 
(Free Response Percentage) 
  
IQV Value Percentile 

 0th 25th 50th 75th 100th 
  0 63 126 190 253 
SD - 1 0.470 0.551 0.631 0.705 0.769 
SD + 1 0.470 0.449 0.428 0.407 0.387 
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Hypothesis 3b: The negative relationship between observation checklist counts and 

incident probability will be stronger when those observation checklists have free response 

questions with longer responses. 

The one through seven day average lengths of free-response item answers were entered 

as an interaction term between forty nine logistic regression models assessing the impact of 

observation sums in the past one to seven days on incident probabilities within the next one to 

seven days. The LME consisted of observation counts today predicting an incident within the 

next three days (OR = 1.004, p = 0.034), and the overall model for this LME significantly 

contributed to the reduction in error variance of the outcome from the null model (R2
N = 0.0101, 

𝜒2 = 8.06, p = 0.045). The interaction effect for the same LME was nonsignificant (OR < 1.000, 

p = .530), although as shown in Figures 10 and 11, there are clear significant trends across the 

five, six, and seven day observation count totals on incidents, and the corresponding interaction 

effects. 
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Results Summary 

Table 10 contains summaries for each of the MLE regressions performed above, 

including Odds Ratios for all observation and interaction effects, lags, Nagelkerke’s pseudo R2, 

likelihood ratio tests, and predictive measures. Additional measures can be assessed in Appendix 

B, where a greater number of statistics for each test are listed. 

Predictably, the model for hypothesis 3 had the greatest area under the curve, highest 

specificity, and lowest sensitivity, as only 0.5% of days contained incidents, but almost all 

models were more likely to commit a false-negative error than a false-positive. The only 

exception to this rule was hypothesis 1, which predicted the seven-day rolling aggregation of 

incidents. This makes sense, as an incident was more likely than not to occur over any given 

seven-day period. The most balanced model in regards to specificity and sensitivity was the 

interaction between free response percentage and observations. 

All but Hypothesis 2 were shown to be better at reducing the error variance in the 

outcome than the null model, as shown by the p-value under ‘Overall Model Fit Statistics’.  
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Table 10       
       

Summary Table for all Effect Sizes and p-Values of Lags with Maximal Effects 
  
Hypothesis LME Days Lagged Observation Effects Interaction effects 
  Observations Incidents OR p OR p 
1A 2 7 1.007 0.035 <1.000 0.023 
1B 2 2 1.002 0.049 0.966 0.004 
2 4 1 1.011 0.032 0.998 0.031 
3A 1 5 1.004 0.006 <1.000 0.021 
3B 1 3 1.004 0.034 1.000 0.53 

 

Table 10 (continued)      
        
Summary Table for all Effect Sizes and p-Values of Lags with Maximal Effects  

               
Hypothesis Overall Model Fit 

Statistics Predictive Measures 
  R2

N 𝜒2 p Accuracy Specificity Sensitivity AUC 
1A 0.0098 7.82  0.050 0.640 0.027 0.997 0.525 
1B 0.0205 15.2 0.002 0.748 0.998 0.007 0.581 
2 0.0559 4.01  0.260 0.994 1.000 0.000 0.748 
3A 0.0352 29.3 < 0.001 0.564 0.484 0.641 0.591 
3B 0.0101 8.06 0.045 0.651 0.999 0.005 0.556 
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Discussion 

      This study sought to add to the BBS literature on observation checklist quality in order to 

inform both practitioners and researchers on best practices regarding observation checklist 

creation for incident reduction. The study operationalized quality across checklist design and 

response variability. Checklist design features include question discrimination score, percentage 

of safety-confirming questions, percentage of free-response questions. Response quality was 

defined as fixed-response variability and free-response answer length. Results show that all 

forms of checklist design are important for enabling observation checklist counts to reduce 

incident probability. 

BBS is only as effective as the data it collects and the behaviors it reinforces. As a system 

which differentiates itself by its ability to focus resources on achieving specific desirable 

outcomes rather than preventing a plethora of undesirable ones, the system must be able to 

inform front-line employees and supervisors on those desired outcomes. Additionally, without 

quality behavioral information, BBS cannot hope to achieve the metrics required to prevent 

downstream injuries. The lynchpin to ensuring quality data collection for BBS outcomes is the 

safety checklist, and this study shows how discrepancies in the quality of checklist design lead to 

undesirable results. 

Two measures of response quality did not significantly affect the relationship between 

number of observations and incidents. For the first measure, IQV, while the model using 

information over the past four days to predict incidents tomorrow showed the strongest 

significant effect between observation counts and incident likelihood, the information provided 

by the model failed to contribute more meaningfully to incident likelihood than the null model. 

This finding contrasts to previous literature investigating pencil-whipping as a contributing 



59 
 

factor to ineffective safety processes (Ludwig, 2014). This poor data entry method results in 

unvaried responses as observers simply check an “all-clear” without truly observing their 

coworkers’ behaviors. Without the behavioral information necessary for intervention, safety 

incidents begin to increase. While the current study does not find support for the outcome, it is 

possible that in this case employees are truly just seeing generally safe results in their 

environment. Even more likely, the extremely low incident base-rate in the department-level 

analyses (less than 1%) may have decreased the analyses’ power so significantly that it missed 

finding a true effect. Future analyses on larger datasets may prove more fruitful for finding an 

effect. 

Second, free-response length did not impact the effect of observation counts on incident 

counts. Regardless of free-response length, incidents were more likely to occur as employees 

completed more observation sheets. This baseline positive relationship between checklists and 

incident probability may result from an overall change in reporting culture across the board. 

Incident probability may be not be increasing because true incidents are occurring more 

frequently (an increase in true-positives), but that employees who witness an incident are more 

likely to report that incident (a decrease in false-negatives). Regardless, while free-response 

length may be an indication of an employee providing a greater amount of detail for a subject 

matter expert to diagnose potential problems, there is much more to a quality free response 

question than length, including specificity and discrimination. Future studies attempting to assess 

free-response quality should pursue these alternatives as potential sources of unstructured 

information useful to reducing incident likelihood. 

Observation checklist design had more impact on incident probability. Discrimination is 

the first of these operationalizations of quality design to be tested. While both Ludwig and 
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Johnston & Pennypacker recommend that the pinpoints used to create observation checklists be 

relatively specific, including information on a specific action verb (“do what?”), a specific 

physical object being acted upon (“to what?”), a conditional modifier indicating the action’s 

place within a greater process or purpose (“when?”), and an end-goal or reason for the original 

action (“why”) (Ludwig, 2018, pp. 113; Johnston & Pennypacker, 1980). Together, these four 

questions make up what this study calls a Discrimination (What What When Why) Score of 

checklist item discrimination. A question with a high Discrimination score must have a moderate 

degree of specificity, as it necessarily describes an action, an object, a context, and a purpose. 

The creation of specific checklist items aligns with Geller’s recommendations for targeting 

specific high-risk behaviors in the environment, as greater focus on these behaviors may lead to 

the largest reduction in safety outcomes (Geller, 2001). In contrast, Komaki et al. suggest using 

vague observation checklist items, as it allows workers to apply the observation checklist in a 

broader variety of environments (Komaki et al., 1978; Wirth & Sigurdsson, 2008). The current 

study supports checklist quality specificity being related to a reduction in incident likelihood. 

Additionally, BBS relies on reinforcing desired behaviors rather than pointing out undesirable 

ones. This study tests the veracity of that claim within the context of observation checklists. 

Observation checklists with a greater average number of safety-confirming items were more 

likely to prevent future incident occurrence.  

 Free-response items have been proposed as valuable to safety checklists due to their ability to 

add contextual information surrounding fixed-response items that might otherwise be 

overlooked, although this hypothesis had not been tested before this study. The current study 

supports the use of free-response as a way to collect information, as checklists with a greater 

percentage of free-response items were more closely related to a reduction in incident likelihood.  
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 Division-wide, the measure of quality with the most immediate impact was safety-confirmation, 

where safety-confirmative observations over the past two days predicted incident likelihood in 

the next two days. Safety-confirmative questions reinforce positive behaviors rather than 

pointing out negative ones, and this study indicates that reinforcement has a short-term impact on 

incident reduction. The measure slowest to affect incident probability was discrimination, where 

it took a week before incident likelihood began to decrease. This may be because more specific 

questions are helpful for subject matter experts reviewing behaviors, who will then have a better 

understanding of how the employee is deviating from that behavior. 

Theoretical Implications 

 This exploratory analysis of observation quality provides a study design framework for future 

research. While previous experiments have assessed BBS interventions and have shown a 

negative relationship between the number of observation checklists and incidents, this study is 

unique in its exploration into the moderators that drive this relationship (Bogard et al., 2015; 

Choudhry, 2014; Hagge et al., 2017; Lebbon et al., 2012; Sultzer-Azaroff et al., 1990). The 

results of this study show that checklist design quality should be considered an important factor 

when evaluating the effectiveness of interventions in case studies.  

As stated previously, this study also sheds light on the debate between generalizability 

and specificity, where more specific checklist items were related to incident negation. As greater 

percentages of free-response items was also associated with incident negation, it may also be 

possible that checklists with more specific action items benefit more greatly from free-response 

questions, as whatever cannot be captured in the specific fixed-response questions may be 

captured in the contextual information provided by free-response options. Future studies are 

needed in order to investigate this interaction. 
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 BBS researchers need to consider both simultaneous and delayed effects of safe behaviors on 

incidents. Future research should consider more time-series tools to assess the effectiveness of 

interventions on outcomes. While same-day studies have shown a general decline in safety 

incidents as employees participate more in observation reporting, the effects of observations on 

incidents may still be underestimated, as the peak impact of observations may be delayed until a 

few days later. Ultimately, multivariate time-series models incorporating a variety of safety 

information may be most helpful toward preventing future incidents. 

Practitioner Implications 

This study informs checklist design and analyses for practitioners. First, free-response 

questions (FRQs) are shown to be effective for incident mitigation. Practitioners should ensure 

they implement a greater number of free-response questions into their checklists for greater 

contextual factors around specific behaviors. Managers should encourage employees to use the 

free response prompts, but not necessarily push their employees to write for the sake of writing, 

as answer length had no impact on observation effectiveness. Additionally, managers should 

double-check pinpoints to ensure they confirm safe behaviors rather than point out unsafe ones. 

Feedforward performance appraisal has been shown as effective to ensuring direct reports digest 

and internalize manager suggestions, and BBS’s focus on desirable behaviors and external 

causes of unsafe behaviors may benefit from the same principle (Budworth et al., 2015).  

 Finally, as stated among theoretical implications, safety analysts should ensure that they 

are measuring the impact of interventions at a lag, as same-day evaluations may be fruitless. 

Instead, practitioners should try to evaluate effectiveness across several different time periods or, 

barring that, at least select a theoretical appropriate lag between the intervention and outcome. 

Limitations and Future Analyses 
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There are a variety of methodological limitations within this study. Firstly, the findings 

should be cross-validated on another dataset. This study used an exploratory methodology in 

which the lag with the strongest relationship between observations and incidents was identified. 

However, it is possible that these lags are idiosyncratic and therefore do not generalize to 

different settings. Accordingly, future studies should seek to verify these assumptions on new 

data. 

There was no measure set in place to control for the increase in false-positives resulting 

from doing so many logistic regressions for each hypothesis. Future analyses may want to lower 

alpha to 0.01 or lower in order to ensure true effects are found. As this study is exploratory in 

nature, an alpha of 0.05 was important for finding results for worth pursuing farther. 

Four of the five hypotheses were tested across two different divisions within the same 

organization. Together, these divisions contain upwards of 1,500 employees, and work across 

many different areas of the plants. While exploratory analysis of intra-division information may 

offer proof-of-concept for future studies, it is difficult to draw a direct connection between an 

observation checklist today and an incident tomorrow, due to geographic dispersion of 

observation and incident locations. Future analyses on the same hypotheses at a lower-level of 

analysis (I.E. the department level) may improve the predictive validity of the models, since an 

observation of behavior in any given area is much more likely to cause incidents in the same 

area. With lower variation within divisions, there should be an increase in power as well. 

Additional studies in different industries would also lend credence to the generalizability of these 

results. 

In terms of measures, discrimination and safety-confirmation ratings of checklist items 

was rated by one individual, and so there was no methodological way to account for inter-rater 
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variability. This methodological shortcoming may reduce the generalizability of item 

discrimination conclusions for other raters. Future studies should use a variety of raters to assess 

discrimination categories. In addition, both discrimination (operationalized as Discrimination 

Score) and safety-confirmation were manually coded. While this method has been shown to be 

more accurate at identifying free-text data than machine-learning algorithms (van Atteveldt et al. 

2021), it lacks scalability. To evaluate the thousands more questions and answers in a dataset, or 

generate insights quickly from new data, future studies should consider using natural-language 

processing (NLP) technique to evaluate question quality. NLP is a method that uses machine 

learning to understand text in a similar way to humans, and has shown success in previous 

exploratory analyses using free text data from incident reports to predict incident outcomes, 

injury risk, and injury severity (Sarkar & Maiti, 2020). While these studies have primarily taken 

a “everything but the kitchen sink” approach to text analysis, creating black-box tools that are 

accurate but difficult to interpret, a supervised machine learning approach using theory-driven 

indicators of safety outcomes may generate a model that is both accurate and interpretable. Such 

a model may be scalable to large amounts of data, and assist practitioners in creating high-quality 

observation checklists.  



65 
 

 

References 

Bogard, K., Ludwig, T., Staats, C., & Kretschmer, D. (2015). An Industry’s Call to Understand 

the Contingencies Involved in Process Safety: Normalization of Deviance. Journal of 

Organizational Behavior Management. 

Bradler, C., Dur, R., Neckermann, S., & Non, A. (2016). Employee Recognition and 

Performance: A Field Experiment. Management Science, 62(11), 3085–3099. 

https://doi.org/10.1287/mnsc.2015.2291 

Brondolo, E. (2021). Chapter 16—Methods: Measuring variables. In E. Brondolo (Ed.), 

Psychology Research Methods (pp. 423–449). Academic Press. 

https://doi.org/10.1016/B978-0-12-815680-3.00016-5 

Budworth, M.-H., Latham, G. P., & Manroop, L. (2015). Looking Forward to Performance 

Improvement: A Field Test of the Feedforward Interview for Performance Management. 

Human Resource Management, 54(1), 45–54. https://doi.org/10.1002/hrm.21618 

Choudhry, R. M. (2014). Behavior-based safety on construction sites: A case study. Accident 

Analysis & Prevention, 70, 14–23. https://doi.org/10.1016/j.aap.2014.03.007 

Cooper, M. D., (2008). Exploratory Analyses of the Effects of Managerial Support and Feedback 

Consequences on Behavioral Safety Maintenance. Journal of Organizational Behavior 

Management, 26 (3), 1-41. 

Cooper, M. D. (2009). Behavioral Safety Interventions A Review of Process Design Factors. 

Professional Safety, 54(02). 

https://doi.org/10.1287/mnsc.2015.2291
https://doi.org/10.1002/hrm.21618


66 
 

DePasquale, J., & Geller, S., (1999). Critical Success Factors for Behavior-Based Safety: A 

Study of Twenty Industry-wide Applications. Journal of Safety Research, 30 (4), 237-

249. 

Dufek, J. S., Bates, B. T., & Davis, H. P. (1995). The effect of trial size and variability on 

statistical power. Medicine & Science in Sports & Exercise, 27(2), 288–295. 

https://doi.org/10.1249/00005768-199502000-00021 

Fudenberg, D., & Levine, D. K. (2014). Recency, consistent learning, and Nash equilibrium. 

Proceedings of the National Academy of Sciences, 111(Supplement 3), 10826. 

https://doi.org/10.1073/pnas.1400987111 

Geller, E.S. (2001) The Psychology of Safety Handbook. CRC Press. 

Geller, E. S. (2005). Behavior-Based Safety and Occupational Risk Management. Behavior 

Modification, 29(3). https://doi.org/10.1177/0145445504273287 

Heinrich, H. (1931). Industrial Accident Prevention; a Scientific Approach. McGraw-Hill book 

company. 

Hagge, M., McGee, H., Matthews, G., & Aberle, S. (2017). Behavior-Based Safety in a Coal 

Mine: The Relationship Between Observations, Participation, and Injuries Over a 14-

Year Period. Journal of Organizational Behavior Management, 37(1), 107-118. 

Johnston, J. M., & Pennypacker, H. S. (1980). Strategies and tactics of human behavioral 

research. Lawrence Erlbaum Associates, Inc. 

Kabil, G. V., & Sundararaju, V. (2019). Behavior Based Safety in Workplace. International 

Journal of Research in Engineering, Science, and Management, 2(12). 

Kluger, A. N., & Nir, D. (2010). The feedforward interview. Human Resource Management in 

Israel, 20(3), 235–246. https://doi.org/10.1016/j.hrmr.2009.08.002 

https://doi.org/10.1249/00005768-199502000-00021
https://doi.org/10.1249/00005768-199502000-00021
https://doi.org/10.1249/00005768-199502000-00021
https://doi.org/10.1177/0145445504273287
https://doi.org/10.1177/0145445504273287
https://doi.org/10.1016/j.hrmr.2009.08.002
https://doi.org/10.1016/j.hrmr.2009.08.002


67 
 

Komaki, J., Barwick, K. D., & Scott, L. R. (1978). A behavioral approach to occupational safety: 

Pinpointing and reinforcing safe performance in a food manufacturing plant. Journal of 

Applied Psychology, 63(4), 434–445. https://doi.org/10.1037/0021-9010.63.4.434 

Lebbon, A., Sigurdsson, S., & Austin, J. (2012). Behavioral Safety in the Food Services 

Industry: Challenges and Outcomes. Journal of Organizational Behavior Management, 

32 (1). https://doi.org/10.1080/01608061.2011.592792. 

Laske, M. (2020). Who Is Better At Identifying At-Risk Behavior? Leader Versus Employee 

Processes To Implement Task-Specific Behavioral Pinpoints. Unpublished Master’s 

Thesis. Appalachian State University, Boone, NC. 

Ludwig, T. D. (2014). The Anatomy of Pencil Whipping. Professional Safety, 59(2), 47–50. 

Ludwig, T. D. (2018). Dysfunctional practices that kill your safety culture. Calloway Publishing. 

McSween, T. (2003). Value-Based Safety Process: Improving Your Safety Culture with 

Behavior-Based Safety, Second Edition. John Wiley & Sons, Inc., Kindle Version. 

Mayer, G. R., Sultzer-Azaroff, B., & Wallace, M. (2019). Behavior analysis for lasting change 

(4th ed.). Sloan Publishing, LLC. 

Miller, L. K. (2006). Principles of everyday behavior analysis (4th ed.). Thomson Wadsworth. 

National Safety Council. (2020) Work Injury Costs.  https://injuryfacts.nsc.org/work/costs/work-

injury-costs/ 

Robinson, R. L., Navea, R., & Ickes, W. (2013). Predicting Final Course Performance From 

Students’ Written Self-Introductions: A LIWC Analysis. Journal of Language and Social 

Psychology, 32(4), 469–479. https://doi.org/10.1177/0261927X13476869 

https://injuryfacts.nsc.org/work/costs/work-injury-costs/
https://injuryfacts.nsc.org/work/costs/work-injury-costs/
https://injuryfacts.nsc.org/work/costs/work-injury-costs/
https://doi.org/10.1177/0261927X13476869
https://doi.org/10.1177/0261927X13476869


68 
 

Sarkar, S., & Maiti, J. (2020). Machine learning in occupational accident analysis: A review 

using science mapping approach with citation network analysis. Safety Science, 131, 

104900. https://doi.org/10.1016/j.ssci.2020.104900 

Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. (p. 457). Appleton-

Century. 

Speer, A. (2018). Quantifying with words: An investigation of the validity of narrative-derived 

performance scores. Personnel Psychology, 71. https://doi.org/10.1111/peps.12263 

Speer, A. B. (2021). Scoring Dimension-Level Job Performance from Narrative Comments: 

Validity and Generalizability When Using Natural Language Processing. Organizational 

Research Methods, 24(3), 572–594. https://doi.org/10.1177/1094428120930815 

Spence, J. R., & Keeping, L. (2011). Conscious rating distortion in performance appraisal: A 

review, commentary, and proposed framework for research. Human Resource 

Management Review, 21(2), 85–95. https://doi.org/10.1016/j.hrmr.2010.09.013 

Sulzer Azaroff, B. (1980). Behavioral Ecology and Accident Prevention. Journal of 

Organizational Behavior Management, 2(1), 11–44. 

https://doi.org/10.1300/J075v02n01_02 

Sultzer-Azaroff, B., Loafman, B., Merante, R., & Hlavacek, A. (1990). Improving Occupational 

Safety in a Large Industrial Plant. Journal of Organizational Behavior Management, 

11(1), 99-120. https://doi.org/10.1300/J075v11n01_07. 

Szumilas, M. (2010). Explaining odds ratios. Journal of the Canadian Academy of Child and 

Adolescent Psychiatry = Journal de l’Academie Canadienne de Psychiatrie de l’enfant et 

de l’adolescent, 19(3), 227–229. PubMed. 

https://doi.org/10.1177/1094428120930815
https://doi.org/10.1300/J075v02n01_02
https://doi.org/10.1300/J075v11n01_07
https://doi.org/10.1300/J075v11n01_07


69 
 

U.S Bureau of Labor Statistics. (2020). BLS Census of Fatal Occupational Injuries Summary, 

2019. https://www.bls.gov/news.release/cfoi.nr0.htm 

U.S. Bureau of Labor Statistics. (2021). Employer-Reported Workplace INjuries and Illnesses - 

2020. 

van Atteveldt, W., van der Velden, M. A. C. G., & Boukes, M. (2021). The Validity of 

Sentiment Analysis: Comparing Manual Annotation, Crowd-Coding, Dictionary 

Approaches, and Machine Learning Algorithms. Communication Methods and Measures, 

15(2), 121–140. https://doi.org/10.1080/19312458.2020.1869198 

Wirth, O., & Sigurdsson, S. O. (2008). When workplace safety depends on behavior change: 

Topics for behavioral safety research. Journal of Safety Research, 39(6), 589–598. 

https://doi.org/10.1016/j.jsr.2008.10.005 

https://www.bls.gov/news.release/cfoi.nr0.htm
https://www.bls.gov/news.release/cfoi.nr0.htm


70 
 

Appendix A: Logistic Regression Results 

Hypothesis 1A 

Table 11    
    
Model Coefficients - 7-Day Incident Aggregation 
      

Variable Estimate 95% Confidence Interval 
    Lower Upper 

Intercept -0.64231 -1.50469 0.2201 
2-Day Observation Sum 0.00566 3.90E-04 0.0109 
2-Day Actionability Score 
Average 0.01792 0.00493 0.0309 

2-Day Observation Sum ✻ 2-Day 
Actionability Score Average -8.15e−5 -1.52e−4 -1.10e−5 

 

Table 11 
(continued)       
       
Model Coefficients - 7-Day Incident 
Aggregation 

    

 
 

       

  SE Z p Odds Ratio 95% Confidence 
Interval 

          Lower Upper 
Intercept 0.44 -1.46 0.144 0.526 0.222 1.246 
2-Day 
Observation Sum 0.00269 2.1 0.035 1.006 1 1.011 

2-Day 
Actionability 
Score Average 

0.00663 2.7 0.007 1.018 1.005 1.031 

2-Day 
Observation Sum 
✻ 2-Day 
Actionability 
Score Average 

3.60E-
05 -2.27 0.023 1 1 1 
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Table 12       
       

Model Fit Measures       
  

Model Deviance AIC R²N Overall Model Test 

        χ² df p 
1 1427 1435 0.00976 7.82 3 0.05 

 

Table 13   
   
Collinearity 
Statistics   
  

Variable VIF Tolerance 
2-Day Observation 
Sum 13.46 0.0743 

2-Day Actionability 
Score Average 4.46 0.2241 

2-Day Observation 
Sum ✻ 2-Day 
Actionability Score 
Average 

21.96 0.0455 

 

Table 14   
 

   
 

Classification Table – 7-Day Incident Aggregation 
        

Observed Predicted % 
Correct 

  0 1   
0 11 390 2.74 
1 2 688 99.7 
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Table 15    
    

Predictive Measures   
        
Accuracy Specificity Sensitivity AUC 
0.641 0.0274 0.997 0.525 

 

Table 16    
    

Omnibus Likelihood Ratio Tests    
        

    
Predictor χ² df p 

2-Day Observation Sum 4.47 1 0.034 
2-Day Actionability Score 
Average 7.55 1 0.006 

2-Day Observation Sum ✻ 2-
Day Actionability Score Average 5.18 1 0.023 
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Hypothesis 1B 

Table 17     
     
Model Coefficients - 7-Day Incident Aggregation  
       

Variable Estimate 95% Confidence Interval SE 
    Lower Upper   
Intercept -1.72771 -2.23143 -1.22398 0.25701 
2-Day Observation Sum 0.00228 5.09E-06 0.00456 0.00116 
2-Day Average Affirmation 
Percent 1.02989 0.48129 1.5785 0.2799 

2-Day Observation Sum ✻ 2-Day 
Average Affirmation Percent -0.00439 -0.00736 -0.00142 0.00152 

 

Table 17 (continued)      
      
Model Coefficients - 7-Day Incident Aggregation   
        

Variable Z p Odds Ratio 95% Confidence 
Interval 

        Lower Upper 
Intercept -6.72 < .001 0.178 0.107 0.294 
2-Day Observation Sum 1.96 0.049 1.002 1 1.005 
2-Day Average Affirmation 
Percent 3.68 < .001 2.801 1.618 4.848 

2-Day Observation Sum ✻ 2-
Day Average Affirmation 
Percent 

-2.9 0.004 0.996 0.993 0.999 
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Table 18       
       

Model Fit Measures      
  

Model Deviance AIC R²N Overall Model Test 

        χ² df p 
1 1217 1225 0.0205 15.2 3 0.002 

 

Table 19   
   
Collinearity Statistics   
  
Variable VIF Tolerance 

2-Day Observation Sum 2.04 0.49 

2-Day Average Affirmation Percent 6.23 0.161 

2-Day Observation Sum ✻ 2-Day 
Average Affirmation Percent 5.5 0.182 

 

Table 20   
 

   
 

Classification Table – 7-Day Incident Aggregation 
        
Observed Predicted % Correct 
  0 1   
0 814 2 99.8 
1 273 2 0.727 

 

Table 21    
    

Predictive Measures   
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Accuracy Specificity Sensitivity AUC 
0.748 0.998 0.00727 0.581 

 

Table 22    
    

Omnibus Likelihood Ratio 
Tests    
        

    
Predictor χ² df p 
2-Day Observation Sum 3.81 1 0.051 

2-Day Average Affirmation 
Percent 13.65 1 < .001 

2-Day Observation Sum ✻ 2-
Day Average Affirmation 
Percent 

8.65 1 0.003 
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Hypothesis 2 

Table 23     
     
Model Coefficients - 7-Day Incident Aggregation 
       

Variable Estimate 95% Confidence Interval SE 
    Lower Upper   
Intercept -12.279 -20.2 -4.3424 4.04938 
4-Day Observation Sum 0.0111 9.46E-04 0.0212 0.00518 
4-Day IQV Average 0.1422 -7.36e−4 0.2851 0.07292 
4-Day Observation Sum ✻ 4-Day 
IQV Average -2.27e−4 -4.33e−4 -2.04e−5 1.05E-

04 
 

Table 23 (continued)      
      
Model Coefficients - 7-Day Incident Aggregation  
         

Variable Z p Odds Ratio 95% Confidence 
Interval 

        Lower Upper 

Intercept -3.03 0.002 4.65E-06 1.66E-
09 0.013 

4-Day Observation Sum 2.14 0.032 1.011 1.001 1.0215 
4-Day IQV Average 1.95 0.051 1.153 0.999 1.3299 
4-Day Observation Sum ✻ 4-Day 
IQV Average 

-2.15 0.031 1 1 1 
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Table 24       
       

Model Fit Measures      
  

Model Deviance AIC R²N Overall Model Test 

        χ² df p 
1 70.2 78.2 0.0559 4.01 3 0.26 

 

Table 25   
   
Collinearity Statistics   
  
Variable VIF Tolerance 
4-Day Observation Sum 15.29 0.0654 
4-Day IQV Average 4.34 0.2304 
4-Day Observation Sum 
✻ 4-Day IQV Average 11.51 0.0869 

 

Table 26   
 

   
 

Classification Table – 7-Day Incident Aggregation 
        

Observed Predicted % 
Correct 

  0 1   
0 1069 0 100 
1 6 0 0 

 

Table 27    
    

Predictive Measures    
        
Accuracy Specificity Sensitivity AUC 
0.994 1 0 0.748 
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Table 28    
    

Omnibus Likelihood Ratio 
Tests    
        

    
Predictor χ² df p 
4-Day Observation Sum 3.29 1 0.07 
4-Day Average Index of 
Qualitative Variability 3.83 1 0.05 

4-Day Observation Sum ✻ 4-
Day Average Index of 
Qualitative Variability 

3.59 1 0.058 
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Hypothesis 3A 

Table 29     
     
Model Coefficients - 7-Day Incident Aggregation 
       

Variable Estimate 95% Confidence Interval SE 
    Lower Upper   
Intercept -0.12089 -0.39784 0.15606 0.1413 
1-Day Observation Sum 0.00416 0.00122 0.00711 0.0015 
One-Day Free Response 
Percentage 5.04E-05 -0.01015 0.01025 0.00521 

1-Day Observation Sum ✻ One-
Day Free Response Percentage -1.21e−4 -2.24e−4 -1.83e−5 5.26E-

05 
 

Table 29 (continued)      
      
Model Coefficients - 7-Day Incident Aggregation  
       

 

Variable Z p Odds 
Ratio 

95% Confidence 
Interval 

        Lower Upper 
Intercept -0.85555 0.392 0.886 0.672 1.169 
1-Day Observation Sum 2.77381 0.006 1.004 1.001 1.007 
One-Day Free Response 
Percentage 0.00968 0.992 1 0.99 1.01 

1-Day Observation Sum 
✻ One-Day Free 
Response Percentage 

-2.30792 0.021 1 1 1 
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Table 30       
       

Model Fit Measures      
  

Model Deviance AIC R²N Overall Model Test 
        χ² df p 

1 1486 1494 0.0352 29.3 3 < .001 
 

Table 31   
   
Collinearity 
Statistics   
  
Variable VIF Tolerance 
1-Day Observation 
Sum 1.45 0.692 

One-Day Free 
Response 
Percentage 

5.14 0.195 

1-Day Observation 
Sum ✻ One-Day 
Free Response 
Percentage 

5.91 0.169 

 

Table 32   
 

   
 

Classification Table – 7-Day Incident Aggregation 
        

Observed Predicted % 
Correct 

  0 1   
0 261 278 48.4 
1 199 355 64.1 
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Table 33    
    

Predictive Measures   
        
Accuracy Specificity Sensitivity AUC 

0.564 0.484 0.641 0.591 
 

Table 34    
    

Omnibus Likelihood Ratio Tests    
        

    
Predictor χ² df p 
1-Day Observation Sum 7.85 1 0.005 
One-Day Free Response 
Percentage 9.37E-05 1 0.992 

1-Day Observation Sum ✻ One-
Day Free Response Percentage 5.35 1 0.021 
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Hypothesis 3B 

Table 35     
     
Model Coefficients - 7-Day Incident Aggregation 
       

Variable Estimate 95% Confidence Interval SE 
    Lower Upper   
Intercept -0.87712 -1.23159 -0.5227 0.18085 
One-Day Observation Sum 0.00666 0.00212 0.0112 0.00231 

Average FRQ Response Length -4.02e−5 -1.11e−4 3.03E-05 3.60E-
05 

One-Day Observation Sum ✻ 
Average FRQ Response Length -1.67e−7 -6.56e−7 3.22E-07 2.49E-

07 
 

Table 35 (continued)      
      
Model Coefficients - 7-Day Incident Aggregation  
 

       

Variable Z p Odds 
Ratio 

95% Confidence 
Interval 

        Lower Upper 
Intercept -4.85 < .001 0.416 0.292 0.593 
One-Day Observation Sum 2.876 0.004 1.007 1.002 1.011 
Average FRQ Response 
Length -1.117 0.264 1 1 1 

One-Day Observation Sum 
✻ Average FRQ Response 
Length 

-0.67 0.503 1 1 1 
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Table 36      
       

Model Fit Measures      
  

Model Deviance AIC R²N Overall Model Test 

        χ² df p 
1 1403 1411 0.0141 11.2 3 0.011 

 

Table 37   
   
Collinearity Statistics   
  

Variable VIF Tolerance 

One-Day Observation Sum 3.52 0.2843 

Average FRQ Response Length 6.49 0.154 
One-Day Observation Sum ✻ Average 
FRQ Response Length 10.17 0.0983 

 

Table 38   
 

   
 

Classification Table – 7-Day Incident Aggregation 
        

Observed Predicted % 
Correct 

  0 1   
0 704 7 99 
1 382 0 0 

 

Table 39    
    

Predictive Measures    
        
Accuracy Specificity Sensitivity AUC 

0.644 0.99 0 0.569 
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Table 40    
    

Omnibus Likelihood Ratio Tests    
        

    
Predictor χ² df p 
One-Day Observation Sum 8.458 1 0.004 
Average FRQ Response Length 1.246 1 0.264 
One-Day Observation Sum ✻ Average 
FRQ Response Length 0.456 1 0.5 
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Appendix B: IRB Approval Form 

 

  



86 
 

Appendix C: Data and Materials Distribution Agreement 
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